翻訳と辞書 |
Poincaré recurrence theorem : ウィキペディア英語版 | Poincaré recurrence theorem In mathematics, the Poincaré recurrence theorem states that certain systems will, after a sufficiently long but finite time, return to a state very close to the initial state. The Poincaré recurrence time is the length of time elapsed until the recurrence (this time may vary greatly depending on the exact initial state and required degree of closeness). The result applies to isolated mechanical systems subject to some constraints, e.g., all particles must be bound to a finite volume. The theorem is commonly discussed in the context of ergodic theory, dynamical systems and statistical mechanics. The theorem is named after Henri Poincaré, who published it in 1890. == Precise formulation == Any dynamical system defined by an ordinary differential equation determines a flow map ''f'' ''t'' mapping phase space on itself. The system is said to be volume-preserving if the volume of a set in phase space is invariant under the flow. For instance, all Hamiltonian systems are volume-preserving because of Liouville's theorem. The theorem is then: If a flow preserves volume and has only bounded orbits, then for each open set there exist orbits that intersect the set infinitely often.〔.〕 As an example, the deterministic baker's map exhibits Poincaré recurrence which can be demonstrated in a particularly dramatic fashion when acting on 2D images. A given image, when sliced and squashed hundreds of times, turns into a snow of apparent "random noise". However, when the process is repeated thousands of times, the image reappears, although at times marred with greater or lesser bits of noise.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Poincaré recurrence theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|